Bring4th

Full Version: Ra's calling, Law of One Book 1, Law of Squares
You're currently viewing a stripped down version of our content. View the full version with proper formatting.
Pages: 1 2 3
What about this quote, though, which would seem to indicate that they are talking about 2^10 and not 2*sum (j + 1)^2, j = 0 to 10?

"10.13 Questioner: Could you state this in a little different way … how you empower this call?

Ra: I am Ra. We understand you to speak now of our previous information. The call begins with one. This call is equal to infinity and is not, as you would say, counted. It is the cornerstone. The second call is added. The third call empowers or doubles the second, and so forth, each additional calling doubling or granting power to all the preceding calls. Thus, the call of many of your peoples is many, many-powered and overwhelmingly heard to the infinite reaches of the One Creation."
Carla and the Confederation entities she channels agree that sometimes they're at a loss to explain math and science topics to someone without a math and science background. I also saw the 1012 example as 2^10, which is 1024, minus some loss to inefficiency. I can't find the quote right now but I seem to recall that is how Ra described it in another passage.
Hello

Can anyone detail the calculation for the Law of Squares?

thank you very much
love

x

Session 7
Ra: I am Ra. This is incorrect. The square is sequential-one, two, three, four, each squared by the next number.

7.4 Questioner: If only ten entities on earth required your services how would you compute their calling by using this square method?
Ra: I am Ra. We would square one ten sequential times, raising the number to the tenth square.

7.5 Questioner: What would be the result of this calculation?
Ra: I am Ra. The result is difficult to transmit. It is 1,012, approximately. The entities who call are sometimes not totally unified in their calling and, thus, the squaring slightly less. Thus, there is a statistical loss over a period of call. However, perhaps you may see by this statistically corrected information the squaring mechanism.
excellent replies

further note.. it was said that due to the imperfection of the call, the actual calculation is reduced - maybe they took this into consideration and reduced the 2^10 by 12..

they appear to obtain accurate dates in history [although Ra have said, that even this causes them problems]

odd.. maybe it is like me asking you to make a hypercube
it is very simple, squared, the Law of One, brings two, which is self, it starts with three to nine, squared.




(11-29-2009, 07:20 PM)MistaG Wrote: [ -> ]
Quote:Questioner: By squared, do you mean that if ten people call you can count that, when comparing it to the planetary ratio, as 100 people, squaring ten and getting 100?

Ra: I am Ra. This is incorrect. The square is sequential-one, two, three, four, each squared by the next number.

Questioner: If only ten entities on earth required your services how would you compute their calling by using this square method?

Ra: I am Ra. We would square one ten sequential times, raising the number to the tenth square.

Questioner: What would be the result of this calculation?

Ra: I am Ra. The result is difficult to transmit. It is 1,012, approximately. The entities who call are sometimes not totally unified in their calling and, thus, the squaring slightly less. Thus, there is a statistical loss over a period of call. However, perhaps you may see by this statistically corrected
information the squaring mechanism.

When I first read this I was under the impression that Ra was stating 1 as effectively 2, such that 2^10 = 1024 and that the statistical loss dropped it by 12 to 1012.

However reading it more carefully I'm under the impression that the actual meaning is this:

2*\!\(\*UnderoverscriptBox[\(\[Sum]\), \(j = 0\), \(10\)]\(\((j + 1)\)^2\)\)

Or for those of you who aren't familiar with Mathematica:

2*sum (j + 1)^2, j = 0 to 10

This works out to be exactly 1012 and it fits the description of:

Quote:The square is sequential-one, two, three, four, each squared by the next number.

The only anomaly really is that it needs to be multiplied by 2. Then again the anomaly persists even in the first interpretation because 1^10 = 1 is obviously not 1012 nor is it 1024. So we have to make the mental leap to say that somehow Ra is implying the square of 1 is actually 2. One way to attempt to evaluate this is: Sqrt(1^2 + 1^2) = Sqrt(2). Thus the square of this unit in natural numbers starts with Sqrt(2)^2 = 2. Since Ra seems to be talking whole units it's understandable then that they very likely just took the first perfect square of the square-root of 2 and work from there.

It would be interesting if we could get one more example from Ra, to figure out which interpretation is the right one.

Any other particular takes on this?
The Law of One: Law of Squares is not simply n^2
as the material suggests and others have appropriately highlighted

thank you
xx
x

(05-18-2010, 02:26 AM)WalksN2Worlds Wrote: [ -> ]it is very simple, squared, the Law of One, brings two, which is self, it starts with three to nine, squared.




(11-29-2009, 07:20 PM)MistaG Wrote: [ -> ]
Quote:Questioner: By squared, do you mean that if ten people call you can count that, when comparing it to the planetary ratio, as 100 people, squaring ten and getting 100?

Ra: I am Ra. This is incorrect. The square is sequential-one, two, three, four, each squared by the next number.

Questioner: If only ten entities on earth required your services how would you compute their calling by using this square method?

Ra: I am Ra. We would square one ten sequential times, raising the number to the tenth square.

Questioner: What would be the result of this calculation?

Ra: I am Ra. The result is difficult to transmit. It is 1,012, approximately. The entities who call are sometimes not totally unified in their calling and, thus, the squaring slightly less. Thus, there is a statistical loss over a period of call. However, perhaps you may see by this statistically corrected
information the squaring mechanism.

When I first read this I was under the impression that Ra was stating 1 as effectively 2, such that 2^10 = 1024 and that the statistical loss dropped it by 12 to 1012.

However reading it more carefully I'm under the impression that the actual meaning is this:

2*\!\(\*UnderoverscriptBox[\(\[Sum]\), \(j = 0\), \(10\)]\(\((j + 1)\)^2\)\)

Or for those of you who aren't familiar with Mathematica:

2*sum (j + 1)^2, j = 0 to 10

This works out to be exactly 1012 and it fits the description of:

Quote:The square is sequential-one, two, three, four, each squared by the next number.

The only anomaly really is that it needs to be multiplied by 2. Then again the anomaly persists even in the first interpretation because 1^10 = 1 is obviously not 1012 nor is it 1024. So we have to make the mental leap to say that somehow Ra is implying the square of 1 is actually 2. One way to attempt to evaluate this is: Sqrt(1^2 + 1^2) = Sqrt(2). Thus the square of this unit in natural numbers starts with Sqrt(2)^2 = 2. Since Ra seems to be talking whole units it's understandable then that they very likely just took the first perfect square of the square-root of 2 and work from there.

It would be interesting if we could get one more example from Ra, to figure out which interpretation is the right one.

Any other particular takes on this?
hello

consider: the total is greater than the sum of the parts

this implies that the simplicity of n:n^2 is not what the Law of Squares will yield, and it will necessarily be greater

further: the 'remainder' [n:n^2 + r] is necessarily not assignable to a mind/body/spirit complex
[the remainder being that-which the n^2 formula falls short of]

it would be interesting to form entity terminology towards that-which is comprised of this remainder

anyone?!
http://lawofone.info/results.php?session_id=7&ss=1#6

Quote:7.6 Questioner: About how many entities at present on planet Earth are calling for your services?

Ra: I am Ra. I am called personally by 352,000. The Confederation, in its entire spectrum of entity-complexes, is called by 632,000,000 of your mind/body/spirit complexes. These numbers have been simplified.

circa 1980.

of course, these have to do with law of squares. when queried, Ra doesnt detail how the numbers are calculated :

Quote:7.7 Questioner: Can you tell me what the result of the application of the Law of Squares is to those figures?

Ra: I am Ra. The number is approximately meaningless in the finite sense as there are many, many digits. It, however, constitutes a great calling which we of all creation feel and hear as if our own entities were distorted towards a great and overwhelming sorrow. It demands our service.

so then, are these numbers the result of the application of law of squares, or, law of squares is not applied to calculate the strength of the call yet, and these numbers are the number of individual entities that are calling ? it seems to be the latter though .
The intensity of the call is discussed by Ra. It's about the square of the number of entities, minus some "friction" from the inefficiency of imperfect unity. Ra gives the example of 10 entities providing a call about 1,012 times that of a single individual. 2^10 is 1,024 so this is pretty good efficiency.
352,000 squared is about 123 billion.
632 million squared is 6.3*10^8, squared; about 40 * 10^16, about 400 quadrillion.
You're going to need an upgrade to a 64 bit chip to keep track of numbers like that.
And if the formula is actually 2^352k and 2^632m, then the only valid word for the resulting numbers is "astronomical."

I don't know if there is a recent Q'uo update on the numbers. I am heartened by the spread of other channeled messages that talk about humanity's turn to the light being more powerful now than the dark cabals that have run the world for too long. An example is this June 14 message from SaLuSa:
Quote:You the Lighted Ones are the Knights in Armour that have arrived on Earth to win the final battle, and we tell you that it is already won. The emphasis of power has switched to you, and the Light is now so well established on Earth it cannot be extinguished. In fact it continues to grow exponentially, and is opening up the path to Ascension for all to see. More souls are awakening to their true self, with the knowledge of 2012 and its significance. As always the choice is yours as to whether you accept this unique opportunity to ascend.
Now I don't think that source specifically refers to the Law of One, or of Ra. But if I correctly understand the strength of unified calls, and if many more people today are seeking a spiritual solution than were 30 years ago: the kind of balance-of-power shift described in this quote could well be the situation now. These kinds of encouraging messages seem to be popping up far more often than they used to, while the "gloom & doom" crowd seems to be on the wane, along with the "salvation through cleverness" fear-mongering.

I see this passage as positive news that shared faith is very powerful, rather than as something that requires pulling out a big calculator. (I just did that for the purpose of this post.)
then 352,000 people call the kind of understanding and knowledge of the kind ra has.
Thanks for the link. Should we ask a moderator to merge this tiny little thread with the numerically far superior existing thread?
I don't really have a problem with duplicate threads. It's a pet peeve of mine that the moderators at divinecosmos.com force new posts into old threads. And this thread isn't exactly a duplicate, anyways. More like another take on the information that is always and ever the same. Smile Or something.
Just remembered another thread on this subject: http://www.bring4th.org/forums/showthread.php?tid=623
(07-21-2010, 10:31 PM)βαθμιαίος Wrote: [ -> ]I don't really have a problem with duplicate threads. It's a pet peeve of mine that the moderators at divinecosmos.com force new posts into old threads. And this thread isn't exactly a duplicate, anyways. More like another take on the information that is always and ever the same. Smile Or something.

Well we try not to do it arbitrarily. But sometimes it's appropriate, in the interest of routine housekeeping. Tongue

The 3 threads have been merged.
As a matter of my nerd interest, can anyone transcribe the full number in to English? I know they have math scholars out there constantly inventing new names for huge numbers, I would be interested to hear what the exact number is! Smile In addition to the un-truncated number from βαθμιαίος, We would almost certainly need something like this: http://www.csgnetwork.com/num2texttranslate.html

Unfortunately this particular translator only goes up to 999,999,999. (weak!)
Here is the complete number (attached). It's 107,522 digits long.
If someone made an mp3 of a speech synthesizer intoning all that, would it be a good meditation aid?
(07-23-2010, 10:43 PM)βαθμιαίος Wrote: [ -> ]Here is the complete number (attached). It's 107,522 digits long.

Wow, it dwarfs a Googol even, that is, a one with a hundred zeros following it. Googolplex would be different though... (a Googol to the Googol power.. bam!)

I did some searching to see if I could find if there was any name for a number with about 999,999 zeros behind it, and didn't come up with anything. The largest name, at least as far as Wikipedia is able to see, seems to be a Nongentillion, or a thousand quinquagintaquadringentillion if you prefer the English methodology. (fun to try and say out loud without halting) That's only a mere 10^2703, or about a quarter of the Ra calling number, if I am figuring correctly.

Some fun links, for your inner nerd:
Names of large numbers: http://en.wikipedia.org/wiki/Names_of_large_numbers
Googolplex: http://answers.yahoo.com/question/index?qid=20091127164510AAgaoUv

Questioner Wrote:If someone made an mp3 of a speech synthesizer intoning all that, would it be a good meditation aid?

Only if read by Stephen Hawking. Smile
So... what is the formula? I've now seen a lot of interpretations and I'm if possible more confused than after Ra's initial explanation...

Some say it's N^2
Some say it's 2^N
And yet others come up with really complicated formulas. The number attached in this forum is one such example of ridiculous. No offense but if that's the relation then evil would be completely non existent. I cannot see how it could stand a chance.

I tried to use Wilcocks interpretation (apparently 2^(N-1)) to calculate the number of positive souls needed to call stronger than 6 billion of negative souls.. The answer is 32. But that, again, is just stupid, I mean we got that number right here on the forum. The vast majority of the human population is positive enough. N^2 yields much more realistically sounding numbers. But at that point I'm really just guessing.

And if it's really 32, lets get them together and flip the switch. Right?
I found the attached drawing within my files. It connects the idea of squaring that Ra described with the geometry of packed spheres
I thought that you may find it interesting.
There are 12 spheres to start, these are not counted. They are the maximum numbers of spheres that can surround a sphere, when all the spheres are equal. These are like a base of awareness.


[quote='βαθμιαίος' pid='987' dateline='1233529090']
Some of you may remember this from the old bring4th forums.

Ra says that they are called (or were in 1981) by 352,000. Applying the law of squares to that number, we get something like this:

35756440362757245519209518687405022606824690140247680651802687347539
02262141460163016398494234228958345495662080865421879700170470962561
21304581018186433408837525761842213741645842099262435542333669164940
36430455452300608100193343165870175105037852430956392723088205553577
92117111790898386167168113360715125628031657041992466551324654304458
22038407433736461436502619164408439372998719949483791286809617806961
64696686013405120878191266641554061268579211249829317101415188823236
56206747569793638809920934375728886500788022057739950545798096930948
90400827590646666799829199626554015436839138361167202264403880838230
75047270770823207952532144567284676193029339315510274711918730717670
09674207406476283644989949302265396013493618892725404861863434894545
80825785748504962582675625609978326429194017815398240366218143358337
99416614692897655128119346714487249972598623619279981629236600611210
92173666334963325423369939657513816935951503340636490250334528050111
13974922164018504944157845914778665418799125925742881969110184858754
71526349443116650814932307634147991805761955275066459855388832305995
88194916045195915630624985486753129259215549537323096493752620556587
69127434102642420024922723396119860275096201686681587411694102651284
94228583983094100690979370911686420193937467567136977353287450048675
38742034899130537370102829169945797073811993373586610183257871126865
10420161882373881085202118567062550808154788145638913117803547073566
05081731754642157699699624159684057315586235055425266668338585332678
62856424745370289542448604195264174855999325010793318013685419018516
39772607711476600351465514590940869523994051058559111432594069953626
27541303891519656701375124297793050814233184914851366693107467205774
03601846701470517966236019392878287669282552052431932425577406349513
04536256505563979752710270798683447993340936694200382628213597609467
79690187513807830528336794640053860508701021294439494801559130447119
27664759286174315804132845499259424543691798911156774632555615757420
68727702195611366271952229311621228215755304664815859268874411379402
65958446779605628961470022695194093138358841964497462294421819116425
82207598195853963237308613443315383678790376511105942862840339009038
12794843032189099428769542463565104219797118129708526703744975009365
98974871698374673982930512600124490391830474307718001833977574452797
10478728397990166021279769508960262208258927189229675354079166706899
89654380136469326732641792964446135226769121966156978996579240946317
84347281461919506390453906185466098180497969946647494068279110343507
77050328657145788714247593252338160843749933432423899795707467079616
16905136595837017372182769236439539493779042162062601954795165377869
19655930580134143200193399744732601891731472961817859681052289520779
73286635999970488273897999820364927842973218281805735147001906912808
07873516022014169409712264983080921118922749514788085329529850409348
03321811001754397442612763737149169681299006186883094105912553128509
76475045702172159569423541251318083498788398707072079243826402078357
30034022605835384863205588131962615802304943864951138133562585789754
54699602696499385546113643445647666887234922809125762447230319440869
97423028285279601228711485286732378618155598278748641339164111894552
21574876603382539634166069658686419868457677994587504788926129746159
70701229794538834879011576596251360790059484273211203895418442424278
46688041405834912193639290380614779383384197687227167725564795277332
14394188226347230004010897281923271339069046589695022166572205951491
46055064661788975360347832412289155065721777006543891805758130079210
50542399436374475399031510686031863314678120972533772576893483098948
43792862796378045452836803155026389360630355260314430931255444845929
07870576369936331224143129082932371137110137843558191239538651943900
55185283287279840508552292173688633668366562449399235171030330953612
21549709923533692001228038402531953493132274943658447850589281627345
90574935569974300745653756078927045669182905682374832741382123351188
33802753721592364325123483899559895733341554402139184759938044138423
31493818889396434399979660953826496151151706082500297156272771745748
02655408723704440045417031925265153698652401028493581840982811048453
29498123627149909753794004183258543886100528715505245752494433083438
15450164222147966504797188504935386802333380588401686826041150397393
30053364119093369142672457698802402365650301494093361249532664026452
07488345798749309962267864477523245759581330946141201836330006628395
03265808942960290146818894910346162544946917577747449660655402792386
38248976294701257462977313135262404158993699650318154978410188042761
63341560314919640025926594499518144630367340306245549303176539688133
54097766355075704922773828480991764241172807376656729346609404494893
78260891779708844024457875362477486011131670121499165902653575529630
71229075351753731942218068898227372902068455423966201573698980488277
87060931171075826052817667364793224804097037144373592448869743042243
41142504167083866637023910899430958277024827250198087360499392751455
42693401397754786593393168788455393625853620340291765506269425469952
77782416054032427768635936633293134082481901686277677841192217226695
34060597041177675627917250192956540414599988950615308164657897204010
80710376989692820525532857953643786611388309914865471830863978414017
87022683187124554474488235983772478770403397586078374249139678523572
37996525153731875439958671248923786540096473822991849274226777854113
43157878111712121878634840955305722745149498446387225812809895820310
07767193680629947410583736981549261320442841221357818940786969929046
33086492244999104950548746873450471432553658490838010912215666501748
53438844453647144681384361033923921097892653159534159641771513379361
34777106115637586151654870732325151981641433375432251727800157660449
80363418592903358645558107993421872011130334702241660942351591903887
50636842085758768981656121492474215437396529963523317933693874558533
41921174026201401856370412218176084332328271566486062176938225169283
25495407580615141188466046991299278803055483286046983524418390396637
62236989624292198762359827835007235015068631957409566989549374909728
55488047379862748405418034287587407975193684820858731504037761437388
48854233752780800440877330849491872803175966354527088921147011347866
50811718535094256560671004173408485140769055596070844267556929246924
64702066689736982619542163591010448959363946362934615230492771570687
59107503682430757116218732641091323655340199735645630137678839589964
76060858992973507873823641218419564100530320671009481787364446325886
69647256488828669720316054930785176825698513487413897031581303759595
81689600825893848479180888507951248092837927861222618489214964475425
82434174335441425262751862752438939791055429810949277583034038988408
15703928144536488261171672700649105717591238374417882411271310061890
93198149155893942380712913521463534329356333426799156146761631758593
23091177231196380297459997220268453535656618250116374994793097802356
14332809550447256988046247939759536717875636526514397445155374143749
62766557130018269308312700686368125242466896912026345318694941745440
56200869629095708401783465475858214179914984412357568072316222465200
55824629807375572895782848461845177762961778186355953418619658051576
80179931871485794689878240270307361065732286006769546014644815898447
56085409482134594834626577259833707891882099582386557678330747627401
58525280580649902295985306360548102509137995935405529511331048949978
93770271982193272707417792607858124226570020127997057126594919991869
30098129532905480696772581179830917619712387632333157133678953911248
49760986316529383598523917129140034428229371891521947295312379748892
47753914047843173121764353046032425459306670359058437232003836045853
86051028276522607209901988078275796730060877029312175001442559749870
76861596497898470083710633980586059265696488669343320617567821543017
11385034120380438881481435817176248503024113555517241591446584574718
55851855424795926416591574156567990201119990723154513029326645342675
45830296231078744507862276400944644487682787315518872853931688584936
26683677993860474863768432003802786394410906968504408247426352399234
14632346388812583000795635184864055948307922232521346882890893099324
34088259349467783130957770189211274628879006411326590304726471972191
45152894385525674209880221365775766752682967747325932674403684042265
54077275831287535939820603959594707423290087553112100310992298409777
93498996585536100376190897188065434965562029141183734541173460695029
76377920915667010652598212560661353015336258872724198380246054850911
08199966622239306958189270002633376470729211030923339208285497477888
22381473056655721106426605251063666140007576774862939579948360522143
94285730878086417244049826095844649918530642546914713244085673081266
47430252041840382820205440411097318747265882451316555342584298766830
96462366856909236020234751213133810080926498169559562369384899849507
29055597793986469067381957526400015251735358294128885427211714904293
26991144240525328677007479059041073366761661100501060648311900410444
20061171611319532707607439474353508115227153250612336911379772062447
70167465112834035824350211826111437906959392135453923040432552942591
80400095145798659067468417617982548600171179842821575179504725716836
91037769213314445919302760620673855571094521496873612117753936107076
38173433836000159032420403510054132973464708340919437808019293387402
48588022635746834566980600860667520239568865979168287457106263911984
01677306506715734635350695612632812079556086168658881410147207142286
48472768596442958708220955938747427708197941433856136367521367121979
90166511755958047710307696599407133622793099612083164760861310335036
21142842704720880976821334197289932005343567109476856251862157153960
52157525053263414311641303055627812268339656984283740683839561985872
10586096123678245477423949891558943786470436321354365233848599806173
39584950009258475279783759007607606155854814333714662024512071677561
80654672792197458327499748664842584682795620772908926069624055237606
38904669557850269198800533725970997011369178546248785978401008703068
87141111625126511267348524978550959716625711078889876041318642629407
38061690511821337268520433830047074182706730672202982467555598348614
53313091183276588891187917687893232699019582809240025611654247617629
63335177426315398659612670263807028628853228043036686990735071020058
55029496457748095964698402369855491521752758457228754468555306851943
40018632289923396505621525673179459796775759084634065264506575868717
78014787413992138303220994510303447496458341756956491894011869039675
56308906636117015794022046698688469192890203851728293039246261608424
98207697194189485226597760335352306263319552377801846000924998203247
78793996105049281683712926686081692523803832328754915045613048685867
84072707682825035294844536789058712284169315975095685726309456126468
56003508486502655027847003892280376216051865011108274758517137033451
97093341902375467000568465749290969943857169931300159075278709173705
31657426457386644773316630906789086802866548768750182168227339614531
87321733211787368103341693127489857624011707994806239942531242355564
90972390709733505589177021609422432888780696744231678709621845386295
54784065391692288377984252320385632177231042852425830086096605540705
40396224376457471835391542858500336581745599197440013622442341166499
21534287373334298365423459931722345145364275875037712740087970440754
07590589453032218799303944824171407567590540778851098322300468939426
61456749375533580891119112923922698952114949473703295575052361116014
83192560410619660131079537862433268411277665299154127392419270707116
34989749215060374723904366961042650945501134154143420499901999170471
38172128685479962584755600188853044616378806293687570014906300142875
31916364123261015838509255340678698637860664383137918039379934079219
81625414975283641804069761538962272355638056917217907297230354397996
19096020627574968033808162419601895739934590571927904911277829574010
96558194806867226032305086200475082311110125143798402963950447593164
99738397188515436259121360051311094102168742083154307076336475768904
88738101031694742982588265973404535165063843786034646492843009191792
90665402378780239580506550397796484072149603467448972129886716835630
92309864054140249624357144303864495497243804046232158042463870725463
52174191729136372551983784019420617464485801431690422254961175713622
00346746794762248297962532490905539038487209311797975860484485137936
36832113905467899854422805318582597012349965919170073069027084688149
43084730816412107978784080435871416766715190786900444085858057277185
15877311296102382623533522752763409026956889314275778595939960489001
86832418461118728244652934559105355366718718625709755182058723427579
82642928309563761186479876802397721387239593509301823071569807236969
53250727546066386418047658978524319178216746915730137017895872468885
32900955459510294778735396493511665133329616449158957895052405958438
23933151070399460567103833456908335102654755967601742694084441700175
54411018978660955631976358587485779950228026484959502082187959768209
79573454460524310062569624597479616122079269383367699928120183079801
93639917893038174461852516414506549912503456169833032111644414773268
49128545620391145216394031381684017845800408237342452236973995187489
58808891035434375086428834311789719708068417379982338758762447140676
11423275934258381543260588533346091329848807474822970203370603778726
61258912147362035159749280350733361069448337180275089120878005491148
65668609907681197663441621791652520202286047652792134753972600301470
15586118527790603400664537641123169880792375879592875530300156371401
80180744355522516874927324539515332873558184964184490520442690182404
32507300556919044636646927601058895077168562692456053799442652406478
25302638512580073407259956805288062337897171983136754084375009824876
96111778917988699081466607362268437239742585188293696314618431519115
61280596956619760058311763208953833508907301568763161682364172573077
77344339376368585408329284956563037287700597123693741086192886595021
44828429076511884868083991562943101093428989576575119862370490322858
35451450058694180087688295504785889639719592956110443030324977144026
58997185991698976353438233491639525325435811769276604561158151505146
42212211151556390279159614103229446162124001830771215519551028882856
79200228976861257722638519448148132272997636903612845186175518655682
82803032475000808549681414467133488881843414946942564706997509893917
14030694838304562605357789626571998784864811663498429565089199022355
16086975505751168472755819600556105429798144494108004454101599606628
60352154199374010329824971414013919106310637137054957622402202159892
63177452746884210962895038616236989077237668074039284858087745828159
16529268041884879459765628039869466168294246765630192882035643537897
51539522900017162637758617050509560104269973004396861108966184587918
69345541399741542221602148888573261167422336945978893761992350591767
57629848679918805446869460833149738575752955538665317477185040671416
08494971578902522844641836653366085169761968080676504393699589165793
25075953245036162629569346107660882844291547512507156411177356171318
40366363700335269164167832610956322387965820851685274652850197056573
16111419605986569477912707291665864995784329294878644721236104472598
77596396042150569877890496310042079502283673723460033699474462618335
96199434723757273400695752004922649565872026641179173045000415712468
04484845128633235492086464602187845799649200231214783604286753768791
97688737368011836039075945771961616559474874756292916805115463595452
64817631537612417766325744826143992335465830154701822854824408202266
25954070729167570519954466970237122824960457884958325573373746132065
18813530459679324116445307038780719431925702193051880661646928844200
60323700624127486468875719318425538428369995707430563695406872074659
46751405204267319187636502978381873834022680169630131918249988009146
20243904278436733014433419832096615855471479012253083624432330950373
42421146278172371897724957619349578037984720156432607489391779105109
44496794107695592237966656113830779028233103425712955562886339983070
57188294037841783303508291605779952326861095995996861166110144109514
30765913732603249315674671556736856941944197796363882423232387244632
92196941346059356659213115474105996676497492599963856183681053344144
33172324239695495326515315422314721306220758228322540628919419662921
33207520371172978252509160725972427001880948155708675820856438502038
25530404338330940698563757416077613710773290229622846961293650525557
58425096777512265713711343419325820896989394719233071582625829214083
30369091945670915638735943078497837130239651870869291571047775682487
15729449452906550509720676443994473952387558610181315090301074747964
84288382697140892619882203835336176419357095685444921113761484544580
48680242982070959716336197336365605303768826136651362026956969658420
76533452879734424781835249418577273019060107592741029151159155952894
46521078522975204112848614891722215653326731662716600735309765005284
27282987929879011883885351708151525868471336323346732978946593449709
75783828955310835572778036543610222577852431625885134622217321998853
27372907113958985613016794063107542449920477461976017413374339641537
22437031474765137641312141333621983503665516409915652870642022614600
96919671361201123506573728281277110647972039811059690884322937397204
72162994845613419045056657448995002062282714437935275970106249041147
50034788062994741301175155107105783824257175218528137441065882870578
75650906559140746504123237542167684322220262825904827701648143977788
14449644324359106096596968820276330551554149134311372190227816417149
92106046441586769589172375300312985956454781768611958694622595802639
89383784898187859458699775835856553501359682002731685753505983114348
86527175659522966246323556947490507481084790552414506735635647887490
25381614974510609464403136437935138154888918287621170827323104974111
47520333368434197154634553953439357583889801981068205842795111917856
10214142947541488674164483822757173753273565845733145966628875826176
68550305032296599845187296074735971782647779433927677714662478299067
50238951369980140988835906911794967827706797175526470188280631195531
85905141260841885575857348020854675776828196723058478177499342461138
50890145868071509080645746662015899743058281227992577815236095922161
22307467691671128941501664644175348265402094804255675331933565021009
86769366101073903624565508767093524356713861781783390032421237884019
22847320349838786901337775977326360720553053835771806394123875236292
98742598657957240585668272005997221914908112225446595424875679394094
80248585389949199876040703795702610321475305204952543665063084234173
32686891564372229035032135517993309983115814925716114402660341279361
81821468592918744977816090888695994858261003963370559297738642110584
80049391902992932044905706053048354556627330622135888023349708876463
58254644997863658066214056342425306683178868381014697484037683259484
86052324048363200023703300790378229992306779339541972378132105019337
40799785798625706258221146880339462970239786893555994610853365383894
38144095365528218979686116777573266666950482338402436584186179949726
50372471520256753227617954524582017756182676398659374576759263748911
80615019060454209095303912006991875985044595032147575805043140369702
26706447253277401168113250766141578129423446612701273980794727736602
25998583501172471688234478135797990326942944557416832947690127628323
56261434386900419488177188379487793465263625590848351868322393609783
52650367396683363323848428216792473147488713937464062680905846280909
20222218859694633080777702768297644453240933111729902633701375720036
35886739219503545252034789809589448144404881506636042606854341657386
28127600618699168118182231029609728360409744588633500400970842595891
21849560313586754626537272523803615957180333935218779198554085250090
49498974994733920945840393142762124276486105412422496874087559484638
48930862775006999119090707980536581384866398290156351201634611994266
38570932885134668024375091082189481271554256095946108074787894428683
37263062395171955223167007772592200170508098872193103258189397794844
21258473112613012765898414964899779760843829978615766986390797777175
11961738650780391498306142743679787144376387630092768976435721476304
47249011060396501556920797821751862649693913160202247898396379084573
00680687401368605894956780378839201072881795200825256429614213126125
71648363103797070750231654605902623408871429886280294695705902234501
39911725048219444273207137533347820447910058146908382824128870416767
84965230351327428572935414819298841186144479289135299784458863153453
70685687402466360985640856075222357021987685896736071382619201035753
32347297449920780239254311363699160665157347703785975403690354335468
56556132403050962765823537306494245244605926210395545633335102566277
15265637854960128429332422561114893238582988240876848535552629206276
22575051573029182782618621261738712334937630175285698287141060985642
05560763970812831196728111580347057467893904614421920518522284060390
09401843584848188805299701396494270367185402999721564349673528876816
97574666111897244037118273055574885090456366444166575175911213854012
38621287239117582991918704057554049276658710115155708145874264696923
93162878084170912639070470746226104554342862861325602048206708801212
84864692842739356015856557621241315374481394196901756812261642046127
26145925553761650600866157755628789471680240898596979576940996953588
01531270796066120876340629800385096018533343893564350804074745330588
76183579750828383605680781841528473090309011246732502741369542474933
40213825629449262172225421199938398005740024899408579887712650629471
60948040807154636823803884278580226846376476275417062286200230374726
74078453871833208463800581294619220184800686335449912916458429199291
71495690104766854812401876574417042645889587470529704602852152033940
02392682111108038450240798458615220571219279761630169724658279015033
37382404307585953735928307645702001422807782189593264099675384790571
11289671856409890473506903183197119767136672412422234488802959719360
14320075327033016123210513456942289891441179029573381064575645877295
48207128244821101014042498887286139764737342064032985392532535992492
11284644713400344205903162436051056247475981080686366599412643048419
47904549879873408528590519968648292114617869953682508496322678814774
25589301761806748568320178462217254321350315689487658311139456497765
28949617632211313330364364239082317781281181861401689208538596179589
08832828196590307921010189355139272516158211093134892954744152036570
75359617202146713153929187944337137566835857977555889137643880910384
31869590780288899207296753051490540536356362121197143062868921273662
52578573651693544805502802094781807117175710929710036663195914188580
37655944453005870177825973464801887953620152674842916375932230492199
82277042052268071324213055441061130313125575398055226689707379174405
51405946814084563009986474491558871147557583931673515264798515827090
20097393283277206299128957146911461243661639234681953937452909668061
97287230427189893662079212191063033155343976395983392322215832432532
00524187228654850196849400213429546881671421035943229548262011152478
74453523016432370625771903138053912549149956488064941813173657072569
58871356635211122801493105426033918615785548281256736842333257690246
46638730526604508445404972132519485332916791048404606397983195929248
21916913934185376141481006068253558121570226079603826739813532679900
84753794263368416256565113850288085424607306341961235347251412240813
53514386715600170442078766923508809058451641660289076983663390672732
04561948195877295690946786940416588178293485451518568455927625913593
35955412957855265834284594441999824739866361958500982036274085014162
11628327743018147429062266621349428326374043411332649181050627982415
56836335621963654934064326461374524471234979815895439532283120778005
72564350167909060766568070262106773490095106612650436054897233144087
62780704126286794471329999014017533647241860198695258350473969621517
51458930946800963017503557376545660441054362375076687539135902808549
32741668411200110199061601120248925923444167887056297155999866014768
53946991876994631340942485919150258443089710081108826129317820685264
93671469630199597971235885376979890957838224130483451546966461121724
67372229941726290691878626528972309351051648120890029581439689297389
05099055655419947485090889866536415341834646084429172986103218459921
94964582298880839032911333180209909751506417736882838396354454166362
27106409504337312825575222325568777504729409345401377668911401175648
64942811927567692381964911600428041490447222185207304976362218126621
98924295080129009580214958788091783664556495455385191229484651791305
40550899647231144440077609841056416865481031683584345505886563085219
23821336229188358349070731166830172234427261840073226477615073958848
06476484025853409403607336365468463992684896716169870454172412642291
04585041631248449936489446123190569636615290139962916188554382915338
80903299476102120670837138865116904714024771099601184143826268128784
22979452232160642157532567961514497465763642576250622079815121615865
00183779963546417704453568133360205813070321304772326817050946513760
55503365223471834164088013091323535931014615381109287007194100399952
83012260504793982374001230728098214487482110162122246639088928381602
71845104188870817745742070274216135335185409467521264342193305435393
75765946135985740080820444739760775001838224145107659790591628860233
69156850511949377067425522077031347673700050125653922131864293566445
66165866726310485698904214143214923555709311613478798332223794960829
83390440666119887072921384724208768975056033403458320809645833210909
90095102419997057535197082578948394808032200752350643959071780418055
45217551467344730646393715300791143044255345594232031532489124431735
27521316802154085490154454810872773720353864007099547266123459184609
85893465696334259843126522879669538732425346109224620961688363014522
07037892783493285423302067902399881229822608661674618501661220036910
42402575547635690293469444699491090366261167275221580344733361655219
92148099752672117184822057839265526754424567562876554474857476107971
66408332445607442793634140068863063988245622062097857641182719062334
65827517915149979428344669678372214783979992883589220393777829882962
18239541675362821449958836302755034758324450688720854897713518924668
84639203489631273284414147322736325913500264648710854687340466740084
70737079692943770895861280766978041101284955275651908392374028105356
63791606865181087616991008205301213049716970866930189054743229449137
19759431462125979068033266717738439137043632590688230174911032177071
93132019582843803231140828186410155775261058873069774980857060077785
86316633899047987621725704409236471022674146599282952696107056649866
65616786272502095609715654308907142860163635569852725000119943726608
42042325877389243829822792809319889354436603349335710497748616712764
28511382156345327199910124164093910441592685835905215128949445809748
24519324741818839634351458762302404784476664727567868343845113034427
28453080804503848340604052209267149153133355023139274698994337809155
02970795648252964817032177607476291939075989659872701012926874015780
71596606053897982274244462030226667280387834157263777046046798445222
15044778414135374935723591518678842427618153601214651789664928896109
10663960110386984098557149588236580865256883281661470357868386948857
79821900842382283729508623942921371769648193079246161378646302583811
86772472545913212710695343747511865441813756097448716989001885695592
56640717678214978629786138624196121267428510019757456508888640382696
13932094666354845124375616594901637755106541564944142027353936063266
11112332864819983411447009636485990732814427963361952146976429846795
31891491358189531409351950100881435216218963029832667663160477307397
35577135730975591979100701790547682404829588321093074900605731496424
78618329936629904857635587658962471770161328816396084254003839012542
89066740742813980800813845843982920117882222304411550173986483978807
15787233537994928730990878598351019350450907732416670270085545974593
68465149295791554664401212309924753385274255238745094515297473923130
95097627405608752487971758871035076137680679282990991757446976626938
96974039148216545799777334559715478909734580414346108845486153482339
15184590031184100880205062912092060323334457607468253425702530108670
20804134088412570790023297938493249434684256674622619059057266468621
20711650690004718771122496922652063236403097619138451351983689450416
03242407971966765682591184814730140112263899766337607013046386244513
83077110480183235441447078092135316674742638810108464329425241911027
28388456581472246506133272875914551685816824651387524315730853300562
80769222305366326612235857489588706382993620896381813353124301643258
54706943108844637385935639415954701419937492211614819408604755503648
39650464350542370143641207227907274161427816313414071858451634277347
41583573047377816817786989309511137826712066164638866416199158092690
21693177572438543821331630256930055780013565093144098328749037878222
99380806360208030557699763589983918940760358581060351015755447896772
46223312866997849742825286278562868756054895726684821303011909075736
79820740472777052734577118699949501492684713765345434677528198356452
93590594841402351152667121235464273818687320709705265395311831997333
27049508804138025115197816308694548177399380516420593448406865858496
97835142539887926106490375802451333114763449221521615654648328144294
32173785403048031092846556373233594469335027158394473282753935264891
87047612980594342228803405343021470101844177001602143315434860999200
08296058894830848167529646831474347234760769362718198682005229332124
34125681944598500187046320739895945185721383172737620391555635961037
31850521224149444208292851111922967581360447023621167800413661935944
11312869461554121904096764622076548456970270684165363689925184309241
63346862630078818976460545418295827464894276609664432457215517644026
35944931810358912085987857446595474381484519460866253369316957814103
10375143180051987676198996531836461710656038555118523410260515435544
63593615260662395151170675482394151354797502491146044200420921075232
00260035535937277551041487412229056096798583293041828964452729322124
77849644002881576425824178345021077190374627743553332599711301323878
98634523410095756861858905221061470125751409751724402058136783668691
21502050068363023012041198946693289856543699191865937085832471635556
28645761774293811572484083029264245747317924401857204108354298123652
18494482670573116101168321514419030518563205773279483213636395070314
76022633264149813533404464140433055791281070825785288165582677298784
99288576472977877176247200954293592221979913820529352144806058613581
83235662099695314771561671899849540371114314310649869130852048102942
82064644163246296220422699084745370305972683121405054155999014110412
10037422403821867963449500833486261072198687246406619097828234869271
81990993991069454300024144445098150509812458972087434993054340789179
10276895569639469509059249492721868397523564268433520112751773315039
41508621812228958426630631624085439456173713909159808793333937112168
09164912063221596773336326278906295493464932845804259245299589857541
64539868679040604194700540399514716578261853368202697109230025193116
66645484147397831416245027742339647147421067371955033976862101106463
59619654038745399092221202886785110464876245383868611638282772715190
21680604590373958607500591546385049562394828787439090372727626144902
26557662828520023110983133914984129298232424414352138882080690630692
65511065244692350128328690240631890555527034474025269192329070151227
69771374331583458035830452972005936172899463682936519357988325122709
61512454780715721347104167530472234306398645731259749844046348738341
03168168902071370574454432846519399254188628289257647175666648303279
39770967108888991536264099088098620496493595702203523662980344507305
84735989613636723656754789075495351685593545592135733499041837051404
49621014847455314320002608879734289262190799348340677717049758512888
53155413454800812487354135066323909381244988256224631722493132325196
96402326157730423390302465544245249471017725714071207430699080455304
01183523777785268784064795522213293894300775336342116525769132963338
34792832500013616583637059327254389627836482384620005790356388038723
31591884096558527714673491404497567508807290830719410460336930074171
52923352230643801303844749807677575366131715719091108500655441629313
38893699715489607360930170975923073209332141002513023289681901948904
21055934336949798725915396447807371023809454158779873073935606945099
28116638712534332045021510563306553976194914947909993594760791826158
02132396020007791466229700335166498597527861797363614704446784324207
83913480683394221685982732292048742518578051525045896206823450382892
42597904658466130284162700893779005120315402506428222050306055727643
71542808095846325989619974009226168245525538526963695380208553788837
82972747436374250438622627038148081815520758789626218095716995371301
98575291320370823235680305469199676877736879804320926392557177210962
73213820552377052946949076518074223933059340848946384459019027145094
67072510508238846858915738613612261322986776713415140752276414831319
97247045389117700557881930444319475632221068236642961731018755247965
91471013928540583736540283236646317478342580173781091270837064244109
37694862933695921622664518055827710980543712351202363204013499252548
40202836435334688757490706224348323461519207676517933940595175348956
75333758664812267787202518035038726138870827869530091854223082012512
36196621251196879540872240782096925520517706106622759172902778600102
20291089471050246775497412688283577706967361414567384098146638367187
40472926165738884164554132119868511329635526110197893197206816835451
79771777014605631545170822037113759245749441241636518840033706979288
69747107250068816349712452732163353089806740050855412116972942231783
11391293590775775017165966733762641282467188141150935752169024575134
26008662557036779233523279229987839119026657477328015451243571169806
25043405422040063278469705433299293961850164286073722475701552002779
29641947977825258589781806907693601373040280219646950490952939597563
08455449497978480274268631257184010896813885151605702717205423226257
44847390321960467518966555603047866850563475719734501644328527902836
07284413347319890607281480755570273771372423481377526254110238616736
90344759046530199358252355376903654423752766111996403441416203451159
73726645732353518400842928096460254952633241718300997759033869127114
12407237604281256900773864419240098954837417277943791342056753711417
84542883066359528275091284737105207712216817574095990860709531312828
25682617892138893472315463128832736897630898184746622611825952289860
42044795010300730370512240128695219790330664930169333509527280707026
17701026217412777745873424053442986328442527265494911146872780734867
39444199778993816260730783622178274647324742403986769464849652398389
16844496168717856022070818879992295695780071760082278282322902446471
34100361656463924049015333066944276656871159955183865701361376442036
84928807410534663763444943540368560081588280556984403168082612828529
16058724885958295742981005575942356847330656337908061183792294976921
96412696552330118769469933210123154160336961691252066674956581424551
69406956043399957504522810363611201153816683980103030284985979512474
00837808918178970603051184049950294287023844591527716699754387592806
07212203210740475356638994092997803805102596733546003915447596037417
93042952925017887317065012259182947782035813913277328589977220914818
04532444218021877693847817961506254918804773025285560987282238545119
51370093803953341318589865685311896541042716427262306746566259980810
90068478173483022622744668788877944627642685490598201604384103764264
98756939144149823717952285186331669237506350705293398660570060037694
55341273882073635607015553650928492224471308768838559042027648665044
83930133371581955313351872698071144514697969656956497006642477485862
14652594176453593877898760983508300955118460249282272038574128896785
40967867277769898825902978047672353341484667745599656876184845708806
76195383154203966691834498326942795987671026803809252486471447359969
69498199326508217182607290083620916917346448958003818450921770422249
51320489153251110797818564172778967149125384258140257189794621693628
39596781630616664601076284025278782978325273213601257211371634450138
39930453502621520890509108443044024407412222295544641290710807375668
34926876625317095905973901714584954365030776149040532943739203080288
43117325959622140977269046183962071645468678989579197069503594769404
30435756689596429862085188998022358996742606288169315403165973722238
77058435392581615676412579744115678329528948993155618716709730992767
84332544971511598049390227000135010066291509293140149732701027317149
87784226091633565307243507607299945840700661638031566483764205645696
44889951229280349203015976799816502616201301213294267959302896795221
17175695602862313362628108964135921409537647411841660128914859662843
56717010879413581809711020164707443751315643756275800573154471314912
98648316730482556977545766468003261197630066968470600693390324080123
22554406394962183862267022070415992898734081457050838476032632021930
62323490865233535402066993216041330954471949634847660394508779936936
17085158512962895979361380011086171325515031793614015223289794449633
63115729246345743141813115491298332514089756194335366535039280227577
81964121412030149116133098993600307362229453124575019829602931636326
11392441931571055854769017736643624023250726937921146172966055939791
03896270293451049549828318568491259832897636753039791258893009593300
77617980006680067149489723672652114967152911093995925923332940328894
11637857665937584079630702744067083714088721473297472932386184223559
58632755461152007740950607637221319111620419439008226400530321860783
29938222137776520712915891390171594340078922421479656677274922247029
04247124810959084476865437745548332919674781824298598260628767412674
61735226827608769399476758202799228384061204646032843096640745880346
25080874467525777386558471719456610365472062410959119511947815335737
25100925068364209182251569315861415908957284961404147656009192793725
12462261319788339412626623312201512573496057455945326709911278370310
78715439001603294525500214019460123815066096296925917318397841088325
47251325769269668885438989756517587988363591791220535781484795141008
39760987127451287809328127549627972293226433035373701125799924744666
74821260773878497200300373173161077249817403261193264290751546189759
86231814339955082157666722169934069608651409194848848128265733062835
17700954306042059154747767321821744564483290144901778324793121955874
75159233806366494974134952278519104744978369199786476499494446511035
28890395573994359433145727347587333786046810140426131204917897614653
35163373173609381391175452725042757362372632061862302701731843399210
77216156344809496710268066529211802608860037729981592007467592479539
47952833707035940491566394519466487124430506437038729414966145362294
20735193678982082864779854639836005328200877800354567505382471467274
13724198108577493112062131330442250352379267910526732684548072608439
11981495377242934816882225634852741815647170990276145355135489502573
60044093270538359673995970539826333613575943916280900445472437331783
36363243811575797805152402132361502213947251843521553762462367965009
71950034330894603001329983806372513394421774086112555882441244528709
50786218837805063065311441675044613147124062504764443790693054306898
01494008803264850794860903710118503516458612282087543729531424946635
99778674547005500162975547373187272490392590748548669469934830167050
75546076320753803950302478488133052809064351760419937309869025219242
67761471408583555276293864826038154831128928627623024230456371016839
98724511114333464439329374592764120351461929970160906758731067135741
04331087962466395945272678231864795333736836614873697601036069781281
23486493213741922203967214444488611700973280550055616850605033339507
82402082638694741564504318568392826447046462478176073760703856589204
58839615739953443008673340812855279570389898234815636904696369239510
11801852701484477585901110283769847419291458707290960966792671142408
48372152971500142161399299302841455641053877755429901567409521129877
19547043140148731886949692769921241564503851229637831927270340670901
61975008909468048440690525136342866109479207406391451775278316899795
52676733425778338435422927122551026353149068116713598231629820522193
80302635547627610195432145062832333179310896305532507359073089657889
25817591373804627866800612325669316338819061136880030508159213172245
66748902628415683274355864899402608287384556942244314484767471101907
85976649299431968491161552166649239934870140701622929307661413892600
37618774077311566441416444200415195205254480134204300288175742203921
36957606277686820413750453592284895901191215780792731268047686045831
26437630321070122065260895048970208028445950560463089598367374505241
58855501437329920095284545464570181989967157289463248144804363084564
73221774214660552893213684265129348440756374490362680940043890250195
23180831837728750304412704148597653238347787289360992945727990331342
29226217071721973193867074474462278149332428384696747514059411436025
95687309906810771990356592284234814865848224149351058754356850338302
36890058065949423680146363856486552947814232426358140126259326833855
30157430337509267841076457487199752752618200864999228504899328166875
50247230117134252149154766536938775919283920957183378963431786696958
33339607296960844031590150686129600217489259874664670493406644959025
05242865435932954078569226495034146066610352600757245889627623760353
31691192272979495333963633696853806525135609596000428840335132723658
31974693190180618754240738363048214415578756535075225606806692858247
14550764859738095606703532993312946027298957919829544158130501533514
90194043847252669586089508780016912513418786014019503646104665563783
54538382199993575109968780691946904496826480818552211067580553413821
81199007956052635035800482775321503583486094004456091609458586058273
94904404716146025119661182630592619608344119428421200297859790552898
00008159576994560678330565203376670853922328986627428357396245351470
70576918380270144907054610655136285251428331870880288521338199636969
32877303135014584990557733673153100400418962526835955605096846374686
07744657137549160909872558987503052411888504557972684808466705367659
56281821081216903012919060507764872375609926433243647239495955973692
75290868151095294909493463984232326242029034831632139580944636876188
77806770632783704432553003545863296439987734630125205664617118398480
57170498767204888169106487527583298903368017960084105072071833697212
64442683373969966813343825330974291331580737788538800986858509946874
13564300112906666027394565269556948957597999316113556873431390154060
24304568619444955303951842487659500103751925966418589166958282794322
01519209869141284397447540248473391297620856984943280658735801889882
06619209852443428330324866090300285159545253956277749677912616251642
31581545046534394607613504791780702720745435116645247164602853150190
20943215616177741732534842100725356993240279728188283607340021319282
62655684938967927529143551496633388772226738716926848344688634483651
30776915066189199757770847030691538263807494324710362694993134359602
60661670927270096793741786429967077612170905118629913420119171611537
44002864341238857057165626218453770806875269317613088152444347330849
07145727464829008481613874167650730146151301056623991961051921995898
10909838808728080550806331593508159434546882633272008339095621724103
18597394689885588697778248145564668356671204853674611646412580992066
29411366035559621676661478366735499790591384400311367319991691678321
54784870009150935504739748426305042834096698528747777035807255808994
36597312326274833934984893839019551992492974911463391632351257564992
30462814074543361038436463955385090141787132106255568276241898717360
73891292258335323787092033188558449250048337514793748397558318476820
06553946952781006717569328706334155410857112849936850012261308219735
36316941919430815670300122978450763068067734666920811385309409622954
61045221758985695313314777833634647045313016860693329626269231559927
65851406696535991155961150035527624783495656395541686961032331050603
31252707133442503499360034643141519154952680953732721810409230624244
56653896287080795345321434831458056256369540963972224576848892303190
79844283096841025620507802249731756321973519064906004852060216980501
14153580456094340267538526638826663614352187667628399162711216282785
83659227040769436882307246547441969858762034642161858701537117138866
74146599965558028459219475957051567582643300407166589954138814562083
54422688954981686535091842563516086890088609165542085462660450925220
26299262579366074331557765916681463550333780008852644017474897201951
99163794153227823063512388962826661824086125862641459291777850629853
83170132398797976638939090745910003343063764655853780425329559685376
84351960295314374054018226547801588691946073799769941032011991936515
63321078729899442685378921301930438545004193920098541745010896478537
67816772433927343264620830597395731962802460210235800170202423130166
06713570508701021087441971206246637961452521385123705016946225724021
71699750480845984830783338847085410913708255326347604120621896879552
40831802765515900842238589344187486579238124763189997314991907676165
93442417313468464361615875981733671427907645389622240718077276887054
70008486138722626800979807862043849029581387481654605151964667910184
81339347826029155193659501220776255967971390324786133221036048148685
30193871599589876658302413410851104550814607960487506738328021557119
61893836863792928036175281343623579515070062680216908803887549501310
05617749532149043359777792998385678193539250141451022079689879400590
39538205912541177242644721529183967155727424301891112277200820551016
58807729482029093765411776589933669419679997557215777958182974329116
30820340143737362323655900064980050185164841957489852682968335355508
60636314052212365197893476471181039073985516409029508416852346257442
14832198496089415725453981848107288734356322430900005247299704542075
60150703027806421890020841771632606648360229623375195194379021984483
45496532896295304044523729430903917342029503620477712628307195477375
70086527165794039794840438330298756894932419203530801511599158394783
72687631634682143959305354112351122084370585457153807228355569497708
98969417160969956466960029228669413569330281466018704197872398392846
65987118143008522233042536133325560838844677317681188433125447880005
41662805956938889451176014337564260905186208279727719746862451452139
63962618137142393800582249459294325241760421025039427083858093610299
35793230920705678862702126838148511811299939947133139427141106582218
32217808289110034383762964129907773917804032914393570130958377435405
68486921182273089417797282451290210093879571305336362955226559259003
60471573999838449140502773589737874625506171890303119331469920134893
43892486411469928786945978611789912861878883546214191936160235274086
79744849064950121716747425872790830242100483149896958089722633622773
37842814948073279138673483336924770745161564115664888227092685425398
70904693344176110952747378754639357813121619346898187577249636322128
72879443050681187657778237522363137167132176930425441124805228989746
01136174654495955309091555311824741437868026267317689956267743784240
35766839270474726611058393485796281072122315541411849707071086124781
61125666487323848849952018983991563007782447614476418238909112384647
65198484432537967609339578286836203581173042735854886424250312002323
02367145693688361541105908547430911922982083210460736765493336192080
96183840153258987073664147892497735347055861045944256063215855916250
24215481145314325596145260415518978186711969022969263007320013152033
78618191509074996442818468855182937642379292218208477217475178797131
97778740073855452812832119360509141715625621563804845083828653450230
35269588647297136972915888618593350961720180165659569766493745104208
62316958557341781605516487203693645678341545522237788034120137925993
55522739681254607315625764634775708176661852299730477771478790017526
07762415878146462879592292124596402249006548600401892357179179975094
38086570818107222942226452560383999526593379616052614182275907981283
53075177106791468376479112845973618235257916135870882122688609889871
00420205990408265568463035598669750885609394434125042886743607804154
22780489265252817081684449750908873261276069592524148105843788946716
24162102585670930706670293627308164419891388252892166043777302575867
82984421068964371795720350744094354643799515165263543585851727329919
05792815490034262528562680609769072078791918959802929413571922426288
27000177170753855343581651771992376974091878301572781583585664050919
43605206871866469803213883278276717152982213080896371909790758810570
37851804602556150620585916692461630183333119308819647297508741001546
52356846901671473220929012479128547621095604974624135523491551433172
58593524304374825201414836376193440093457746279526318251140902826016
22763151414038783713942981524761511779656282336346112280309652414352
96504156841827821504534690895399305935224565064253389394973194292778
69270400701665478503713703850896881120547704189721840370774663025183
14126725400750371540744412869634846575745972403889113699060855051969
31015425220564098917351743078951588543992853998187338766165571724406
58456350957848122177696139076812612066276695545183137724047688622574
59357194743250382044692219085204772140117877411356805934707407634069
82019695370152170379695909000612880379661723298029685950534876248855
31363658565444584965662464129554114827042040125987581201603757942167
50180216314277324792611543706239946966936488194103044848154761697563
43946348800101591431818804775996684288544572366229847580964772774210
78873648783830682713488717335709531800894904259142277878903486261506
03263936085816866065285412185399517105042708102238709043730145326838
84232728557218754460940906900881077699481585527200528629762872306280
43305419345169739569692530978462980765284180256535241748807312360955
43930835055796414466879748959925275769106276495587451763369355216172
17122730415939965327195779766468430035887209524003302852898681423037
18274232913199749595861981448257000927940012471695312218715362840441
40623658015115011458878636610485021955552471153962202714157286877905
96130319701091312130111434064331736562042714474207851182786504644392
40130285842484274236372773793111854134094473595382087814366992265962
98930685935599612050792165417694688354646650389414217342657031462478
03493227510147811041020287059096773910017682785509428683267818876824
55696593505085591080506164443157072840685541787385415976403155008946
98456364698169802623102329850416397571440799697183743404410299106641
92630076455326120732046162297610401264079769428163763162824960209208
46102638138897641290384817173684374827933240128456987533106117216556
80728695669999586019291843370354665079278263281811796615530755007418
89488422488189575593952111991192070311995854802981306177537018193355
56446019407007410862739772715356232346805782402469415857027490720656
82839113500861748093627604565528816346175227633413040114032949661619
64620699280980951919755810666736568152526689531823854530460044155356
48357157928820410526132501542349412413190624941376880780441464182526
04841715042701371759302540542556912516594491600542665799034528386607
17024905510932397708145912625009737658557138219928486738509197954074
28105637244370906133595409747387430038433304184876855407267763570517
49773753453057146717518883834526317498168633647140971445947240826052
10414839573195616376779016204402319544216408151344185582837267048629
74419386925240867555352641512289819481254893620985151551932162319821
27057470025052849294469204251939349297891150953676480627658293471819
04559276638992796491807491845623371558690667303338720330713001718343
38080037588216839900160842185771235619617711405514344533164328567183
17358556994935541311464364906147836619981957813219998718382896679459
91635672866264839310490410882491358055617018145653468780613875814741
96930848468216654459234979728501794501054969897097692729245206841733
16161891573336241828104132145785427603255368425930759699675460515522
76030974160367515916436596677148920361450181823885892933557081964797
82208964846999660329340486537292028313600228623900932572961696092259
11840075254758393954160659162133123494490039018615261714123691899141
74122417958615204632063444996285340483919218868264214088242167486106
67866654812889171050364683135432039635572732819212793818641868755073
93455579170727521348113825930418780582557099404063602544696078723204
31638638271449380084027591746814694600089062287329210319719578429572
85804939556905876285059014793225507100602457676580805234720104828400
06932089845342390122538882138424378747802918500364439697405301354084
00137477617532322838194658427426408552473227402994688317098348169398
06252442504491013706734942947033659677122652837054156508110931103633
65616004894136155968173468857711287890712852403421337477060996480040
06494693128840423312930763087596641254671483911202135024755319920893
77194548208242308134822632418757898469680108154357828387386115832746
31720258747404006146290074489881535968370150083201872788984292660472
26590657346898979564011727790164870071408084740847629369230565566045
88058093464640264615631059368455628465962680428738448931814338651690
76885257429792073181608268324974627650917611012695676138219858563267
83351934866419283317351901235590308311988056820360563438274847027705
64672458159956539264329689373220507212307309072607330122866033559301
89443764055222357267691662059651482675049381035000640380560222307773
73262262999228024226201951311126542925666680474002662591123907218587
73924800022345866341655091160723945363014005549317124216563903692993
19419723675789789669598695826511184039500214178681670204827426423955
06928474319925975871870799226970998396537388299700147582233534314533
76466784871535862837562151434974586734467712641863557354318777361316
82407217557348329289002967394241572504220281781627183999869396464388
19571468815077984266771308034075809617270124732191987483374846943299
14816466132833997973977195478678889352496743738374596629993809293033
69326877989876249748241250177385287907603074534671508547163027271498
64671737828511531337867034999955714017859961465446300864906398325055
34434984863337967590014534779840395406571554741599915936579124668327
26021605954528874782034287383212706706454132651156426165302990138060
25034679867888895340146155533680013839709456393388634675204934267990
50221702683999323291038694825423078256841512614321533493291563055880
17502931706152966222486095199198496821575780134704176878483032020832
59675411092398162753834678602976435813573940371518646103621601317296
70524277993740099273763186079936406498838126278604351907112366472135
60048141912605280040043418710972612653864421676582504494715342196508
14581155980464377804030296581042934666205270525018396338506521459922
00165811898177605381794032802136086395331772122419614446430522102910
96748906220094451717205873928295216120322568152938956903346108653618
33087137111709585624379821063665463322578482350427082916546920126869
23078677882632505362728240003922946693719657234339482912158044556861
23853439648297697489140612823154236904405436154624443846745602624303
23966944805675446456548992336620418664899922551846894392382754501909
22696806177907504628258594856898426275994423064902247750973563821622
48965285341664932678000061467779241082911021201847495283502753724328
83504276964534939819230708286699911293720165070289734009985594068314
39857062965579942861786101237269667962401398605976308366117056914943
43527809689640939476073122027657784335495642520397786803393155688102
38699270318274101089700275921583337333515591844115314030981215461681
56042374027199690312168075588967296103367097029112820726408407868229
21110773970873326882596419416020761228508147312954210729204206281297
44619494194291927328810486660317377481963087223595632203609794342979
34931636004203080719286106107396623166143765953350201412980044605087
03636672502360046536992375846079369897596045151649808541349540460280
11614354960235219429529392098821878598781457629532810343595875075704
15008020262780093053637845030622184299146181043581724997838243597660
03463175363820062603679901836578008839246607424508114314768884456336
79704118636351759540888287568688724768598744614332174800669840821623
92988584758520898984527003784016087955068986450043846787222146452397
98862548181008731693128597956899063481200083897009203508338969004821
55137090728933890020233105367673037440594094702371147511219946929896
59502836531820142049171502202440128574181153154621641319504987650877
69902643962811176015361266315893453170103857344900107291568299117778
22873478884440541649388913335891970121056272245560364219409120272513
13799508687456311742850817575632993232341813063624833422975997555896
85302476435455313500664564274095640717574733778357936695238245391097
52571227406652025895323520654774512277204884422576624512777781003292
83801436979546224896041426585392652409865184387708921026399756447872
05925405888493709326938534006644924108974585828295465912660279997747
94313804303060531167126595050935669523050242403127207367622128739827
03477872285199908352215771461353626119490968789263790367757821996597
06635261308975560757970810774206629474967058690035291192679578671198
33191127896471968436732481492910175766934950256597994356107209924427
98878416820296590213774205920424197226637886488885180935825229502026
01283191703574721861015652054247236088711363239255744818113242172019
25337377329450942271952439667483819976535531588504418071098462440008
54163675137981873254100421417912484814991514871163497526103591935493
17332114296156844277913578047979085587622072715652720796566709011690
48492461158339902243157544954484849828687679533808804522965413809403
29614811602000253329308291136328772965859519260675410063827776822560
93083172945930465144349918017205372940321865969696721626535668727615
51056844810415927049498746874770334829754216375886735582610977715328
37556057949830825860315421194541113567612813159293264480858806653976
65329281740503030728260712990843154556574378978304046850777055856408
73781387332343356692518127964317455412343984808828866078023071036983
03425280188665138400167095562933203722611301791605285632706571525037
22415118337175037154142595364232643348027068997833348114786796705079
99764662679079096465892347525211351408326779572674461678353613928354
43003245432801625465757737957602796864363152017279243472793664550816
42666650234256196267262128808552185724509203842927826800693453007139
69853335482355427858622149908483098338827126683456977792911906771992
75119534889364372862670894109633022014080638330184516902412548046921
66192126234296637287181520451618006831335539133581666684220026854176
01237408801852776998680391326461327421503269323798105413793116914365
20277050631975147801543668577928751776943694009712964982985915942058
45010068795976332732222443520991199734826922285955206607321126094947
46449825485745626301442690934190154965279123999025337416070863509827
76549679850892254270083968594581551088009754280176104645240870152620
72859978989764753009317698742121911646405173225561484898331583485642
81558724914917057155790891048291842341566420845832221053964838861661
84975796467991325086126952440309882969409428106725767734534853494395
50589604543665567001638516729984486215682324632980526199436766283268
05129093048188262717205657088278471769238694786037314961850535898156
53155565480472886306527689663434819748192150608315035245209998894902
00162751472435466846956586616892402227812058866285703638480430624685
43048644296428764294583221023743865622846481127933931650235421998168
07821881749768165812540144678490090162582587056353370933308240881146
06749818604887777432205893495996114454438520624729402578221807114074
95916791465194806595850963265990749292853867585052833174572110979076
92806478448711822652043130323016580233437991315761663024491237950261
21948618737604496230543914362245516546292417653599473239692118545454
28590459436664244457272526935188368325369557236107120762716117438808
00168931654166060175960883932226675441070037356175366416282655331698
66626069675321640848299463424489006154223171153016887121371759001001
03403670278058244818014521771265697725765953847593149206071902589056
99760768887136761253854909382126428099420711765180551346619445204893
38708827824581822133415764432866845608165315865928156515435271414198
90020748684771439352238589804275353362874412226924022830264661110301
26543587171410940895283475476935640325432416758774852025085877714984
41416477978905541877774290188483643410244218976184844941713866566446
22250140325523584154612237076719408566818994062856263666083418210346
20962861431581832111825134176735355015830905343805047669877523181307
09383364548896526644994032103377523573840591378990871638087575978199
86642079109147811624706790206513609903525045993766125558809541666739
98051948257159740023375995922617106963439601676509801416377483884713
33114907594935647499542963837882080845949871740595497054355407535476
84121159553315887707647750413474867359647202705995427717133332748149
27265664280720170491124693532177265581158256011178258079948709934883
27998249479539394306531993467383072580021620203128355507070641952009
37551929114961299885284934508950366527239450596869623555743206008752
01041622895449428690659973226009631413224708582486854076127260792524
06745394344989513513608429130856019297995158064478549737287215298639
01699225823168621966061535025883705610261555063286718423603497528225
24340589466616305105350508075055394606499217396697297654144924373182
47847961038356049739687692122758291110922368412716359051405039433215
94667269712088752539484734583230997644205150319470983783974484191374
59449647565051008674635832105107551931991392895643482835157447605605
93185310344118267453702424473078825836758042430093363347691351913349
90628504027552536785141916700891421974341101972333385191912377351153
73233097552190347287778945897317332699815174286131612579341877346248
65015693054450727938246091720033599689481858796073107002841989557504
02024127525689520012727647375007287033127090719834709768024918605392
25482755785335031038733729220761971149463666518444629396876069278386
90864638318705954469562405007424266203177053243465713494845601534960
04136766776884163156548540649924913097708926718292985371456302218512
78729379619771742615041300391851567521950552316685595890174672316453
09495921425513543620787850437802548521156014729309523630509564691039
13961461202778585972479907672191775764463751971805600889264501632608
06300855524510691118645544883258533659229809014461816801213996973789
47183626000768266254032036211650625306773919950574516864050028054395
94401445002720396422435572073511677527660676584420916880069107505988
71381376026248382460277279015659776898611127619111487532041385676135
47986719918898490805899230683163095685932597001715935649390338894526
95796832615871116506468213951976470677176740639183706491627374790960
12401445554407078036281685945210143711082327142504656794911650172832
42152652407200696511633599580494795408565828085021600677537438549717
91173943900526201382225213647666280751115381222563689898666769701028
66171356481370093908997911783191418091768105295516191709595566923768
65288746726879128183513249576781727044428294617533516704007791262919
47792973723654541334298314655681717758761988696450773255647520539725
94032503088246951496003960620403805741106896044975297973524391632615
10885402402015612845869570860954217630420631354003737030669480547191
22553066915566101148676105792903571639744572888402984081236011904179
92121020142196185396603106133206884863516680033158644450998667179786
93671944277540951547965337274122264452739336383248991541557369465549
77591353943366853697033910050783404448841669225942878501901081350837
90314912144257069181780309790006632621719048314083336588708476530671
84403284395343713076182685255495992933243820532581146328709859462741
37927441300439760365408878810286884169362531763952739911085634255051
73381183
I'm sorry, I'm categorically useless at interpreting those drawings. How are they related to the law of squares?

Also, could we not quote that number ? Tongue
The formula of the square is 2 to the power n minus 12. In the example that Ra gave, it was 2x2x2x2x2x2x2x2x2x2 - 12 = 1012. That's 2 to the power 10, minus 12.
The square function is generated naturally by the vibrations of the spheres. Within a pyramid that is made out of spheres. The top sphere vibrates against 4, which vibrate against 1 between them on the other side, those vibrate against 1, inside the pyramid "that's the rebirth", which vibrates against 4 and so on. the vibration is 14141414141414..... from the top of the pyramid to the center of the base.
Any integer number divided by this number generates a value with a remainder that is in the form of fraction of sevenths.
If we divide 1, by these fractions, we get the square function within the generated fraction.
The Law of One may be a reference also to the value 1, as a constant of the potential of love. Thus love, divided by the fraction left after all integers "love" join the field, creates that squaring function.
The same process generates an octave, where the 7th value is equal to infinity.

Of course you can quote the number. The number refers to spheres, it is related also to the number of point where the spheres touch each other. That value within the vibration 14141414141414..... is 4444444444444. Notice that if we divide the vibrations of the points of connection, by the number of spheres, one at a time, we get the number of spheres. for example 4/1 = 4, 4/4 = 1, 4/1 = 4. and so on.

(12-09-2010, 05:57 AM)Ali Quadir Wrote: [ -> ]I'm sorry, I'm categorically useless at interpreting those drawings. How are they related to the law of squares?

Also, could we not quote that number ? Tongue
(12-09-2010, 06:32 AM)Nabil Naser Wrote: [ -> ]The formula of the square is 2 to the power n minus 12. In the example that Ra gave, it was 2x2x2x2x2x2x2x2x2x2 - 12 = 1012. That's 2 to the power 10, minus 12.
Ok but that means
(2^32) -12 = 4294967284 equals approximately 4.3 billion.
(2^33) - 12 = 8589934580 equals approximately 8.6 billion.

The human population is between these numbers so we'd need around 33 purely positive people to out call an entire planet of negative people...

And my question is... Really? It sounds impossible for us not to have 33 positive people on this planet. Considering the lot we've got in here, of course we're not all pure 100% good. But there must be thousands like us.

Quote: The square function is generated naturally by the vibrations of the spheres. Within a pyramid that is made out of spheres. The top sphere vibrates against 4, which vibrate against 1 between them on the other side, those vibrate against 1, inside the pyramid "that's the rebirth", which vibrates against 4 and so on. the vibration is 14141414141414..... from the top of the pyramid to the center of the base.
Forgive me for being terminally thick. I was with you until the word "The"... Yes. The first one.

I've tried to follow your explanations in the other thread also. I recommend against investing effort into getting me to understand it. It might be a waste of your time. Just enjoy yourself with the folks who do understand.
Please continue with your informative posts Nabil, there is nothing yet that does not resonate with your ideas. I follow you.
Thanks
Precisely.. Spend that time on those who do understand. It's clearly appreciated. It will be time better spent and more enjoyable to you and those involved. I'll read along and at some point maybe I'll get it too and if not then that's just the way it is.
I also enjoy your posts Nabil, although I have to say I haven't had time yet to even read most of what you've laid down here, haha! I guess what I mean is, I expect that I will enjoy your posts once I get time to actually think about them.

Regarding the law of squares, I just re-read that part of the book by coincidence a few nights ago. It seems pretty straight forward, and perhaps all this math is not required?

Quote:10.13 Questioner: Could you state this in a little different way … how you empower this call?

Ra: I am Ra. We understand you to speak now of our previous information. The call begins with one. This call is equal to infinity and is not, as you would say, counted. It is the cornerstone. The second call is added. The third call empowers or doubles the second, and so forth, each additional calling doubling or granting power to all the preceding calls. Thus, the call of many of your peoples is many, many-powered and overwhelmingly heard to the infinite reaches of the One Creation.

The way I read this is as follows:

1 + 0 = 1 (The cornerstone, foundational call which is equal to ∞)
1 + 1 = 2 (The second call is added.)
2 + 2 = 4 (The third call empowers or doubles the second)
4 + 4 = 8 (and so forth)
8 + 8 = 16
and so on, and so on:
... 32, 64, 128, 256, 512, etc. etc.

Imagine this repetition happening 352,000 times, I would expect a number as large as βαθμιαίος posted. Is this how you guys read this also?

L&L, ~L
Haha yes, Lavazza, that's how I interpret the text as well. :p
But that means only 33 people are needed to create a stronger call than a negative 8 billion person planet? Doesn't it?
What you described Lavazza is the formula "2 to the power n", where n is an integer. For example, when n = 4, the answer would be 2*2*2*2 = 16
that's the same like
1+1 = 2
2 + 2 = 4
4 + 4 = 8
8 + 8 = 16

When talking about spheres, there are 12 spheres that surround each spheres when all are equal. these are not counted.

(12-09-2010, 01:32 PM)Lavazza Wrote: [ -> ]I also enjoy your posts Nabil, although I have to say I haven't had time yet to even read most of what you've laid down here, haha! I guess what I mean is, I expect that I will enjoy your posts once I get time to actually think about them.

Regarding the law of squares, I just re-read that part of the book by coincidence a few nights ago. It seems pretty straight forward, and perhaps all this math is not required?

Quote:10.13 Questioner: Could you state this in a little different way … how you empower this call?

Ra: I am Ra. We understand you to speak now of our previous information. The call begins with one. This call is equal to infinity and is not, as you would say, counted. It is the cornerstone. The second call is added. The third call empowers or doubles the second, and so forth, each additional calling doubling or granting power to all the preceding calls. Thus, the call of many of your peoples is many, many-powered and overwhelmingly heard to the infinite reaches of the One Creation.

The way I read this is as follows:

1 + 0 = 1 (The cornerstone, foundational call which is equal to ∞)
1 + 1 = 2 (The second call is added.)
2 + 2 = 4 (The third call empowers or doubles the second)
4 + 4 = 8 (and so forth)
8 + 8 = 16
and so on, and so on:
... 32, 64, 128, 256, 512, etc. etc.

Imagine this repetition happening 352,000 times, I would expect a number as large as βαθμιαίος posted. Is this how you guys read this also?

L&L, ~L
Pages: 1 2 3